
SNLA LIBRARY

SANDIA REPORT
844653

SAND91 -8238 l UC-406
Unlimited Release

SAND91-8238
0002

Printed January 1992 UNCLASSIFIED

01/92
30P STAC

Overview of the DART Project

K. R. Berry, F. R. Hansen, L. M. Napolitano, E. L. McKelvey,
D. D. Andaleon, and J. E. Leeper

REFERENCE COP

C2 l

SAND91-8238
Unlimited Release

Printed January 1992

UC-406

Overview of the DART Project

K. R. Berry, F. R. Hansen, L.M. Napolitano,
E. L. McKelvey, D. D. Andaleon, and J. E. Leeper

Advanced Technology Department
Sandia National Laboratories

Livermore, CA 94551

Abstract

DART (DSP Arrary for Reconfigurable Tasks) is a parallel architecture of two
high-performance SDP (digital signal processing) chips with the flexibility to
handle a wide range of real-time applications. Each of the 32-bit floating-
point DSP processors in DART is programmable in a high-level languate (“C”
or Ada). We have added extensions to the real-time operating system used by
DART in order to support parallel processors. The combination of high-level
language programmability, a real-time operating system, and parallel
processing support significantly reduces the development cost of application
software for signal processing and control applications. We have
demonstrated this capability by using DART to reconstruct images in the

prototype VIP (Video Imaging Projectile) groundstation.

3/4

Introduction

Several programs at Sandia National Laboratories require real-time
computational capabilities well in excess of what is readily available in
conventional real-time computers. These efforts include intelligent control
of manufacturing processes where measurements consist of real-time
processing of video imagery, control of active structures (which can involve
very high order plant models and controllers), and real-time automated target
recognition (which again requires the ability to process images and extract
information in real-time). All of these applications involve either very high
speed data processing, very high speed data rates, or both. In the past, the
computational requirements of such problems have been handled by custom
designed hardware. Unfortunately, custom hardware provides an inflexible
solution, and its expense can kill a project before it gets started.

With the recent introduction of floating-point DSP (digital signal
processing) chips, a programmable solution to some of these high-end signal
processing and control problems is now feasible. In 1990, the Advanced
Technology Department at Sandia National Laboratories in Livermore,
California began the DART (DSP Array for Reconfigurable Tasks) project to
take advantage of the new DSP chips. Our goal was a system which could
economically address some of these high-end signal processing and control
applications. In order to address a range of applications, we chose a design
using a parallel architecture which can be extended to provide the needed
amount of computational power. To contain the cost of application software
development, we wanted the system to be programmable in a high-level
language with full operating system support. The DART concept is based on
two Texas Instruments’ TMS320C30 floating-point DSP chips. Texas
Instruments provides several high level language compilers for the ‘C30.
DART uses a parallel architecture which can be extended by plugging DART
boards together. It uses Spectron’s SPOX real-time multi-tasking operating
system with Sandia written extensions to support parallel processing.

This report describes the DART project, what we have done so far, and
where we are going. Section 2 contains a hardware description of DART I, the
first prototype DART board. Section 3 describes the extensions to the SPOX
operating system we implemented to support parallel processing applications,
Section 4 describes our first application of the DART processor, as the
computational center of an artillery-fired close-range reconnaissance system.
Finally, section 5 has some concluding remarks and a brief discussion of
ongoing work.

5

DART I

The electronic hardware design portion of the DART I project involved
designing an experimental board using a parallel architecture of DSP chips.
This system allowed us to explore software and hardware issues involved in a
parallel DSP system. Further, this system allowed a parallel DSP architecture
to be used in solving real problems.

We designed a system with two digital signal processors for the original
DART I system since this is the minimal set of processors required for parallel
operation. An additional design consideration involved the host computer
interface. The design team did not want to use valuable board space for
specific host interface circuitry (e.g., interface to ISA bus or to VME bus). To
simplify the host interface, we selected a PC-AT with a plug-in Banshee board
(containing a single TMS320C30 DSP chip) from Atlanta Signal Processing Inc.
(ASPI) as the host computer.

The basic architecture of the DART I system (see Figure 1) consists of
two Texas Instruments’ TMS320C30 DSP chips. The main memory (128K
words of 32-bit memory) on the primary buses of the DSP chips is partitioned
into two 64K word banks (memory banks 1 and O)- The two processpors share a
common primary bus with a bus switch between processors. This
arrangement allows us to explore a common bus architecture and also a split
bus architecture. A four-port memory (2K words x 32 bits accessible by any of
four ports) connects the expansion ports of both ‘C30S, the expansion port of
the host computer and the primary memory bus on one side of the bus
switch.

Processor Sites - Each processor site consists of a single TMS320C30
processor. An emulation header and interface circuitry provided for
each ‘C30 allows either or both processors to be connected to TI’s
XDS500 Emulator. Interconnected serial ports of both ‘C30S provide
serial communication between processors on the DART I system.

Memory Banks - Main memory on the DART I system consists of two
64K word (32-bit) SRAM memory banks. These memory banks are

switch-settable to any 64K word address boundary within the
TMS320C30’S address space. The physical memory consists of 64K x 4
bit SRAMS. This configuration of SRAMS was a tradeoff between the
depth of available high speed SRAMS and the amount of board space
required for the memory chips.

Bus Switch - The bus switch consists of a collection of DIP switches that
physically disconnects the electrical connection between the two buses.
This feature allows the architectural configuration to be quickly

6

Memory Memory
Bank 1 Bank O

/

I I

Processor 4-Port
Site Z1 Memory

&Left
Interface

I

-lEE

Figure 1
DART 1Architecture

changed between a shared bus mode and a split bus mode. A bus
arbiter managers the bus activity during shared bus mode operation.

4-Port Memory - The four-port memory is a full 32 bits wide and is 2K
words deep. The expansion ports of both ‘C30S connect to this
common four-port memory. The two other ports of the four-port
memory connect to the host computer and to the primary memory bus
of one side of the bus switch. The common four-port memory allows
the DART I processors to pass messages artd data to each other. It also
allows the processors to share data structures and instruction streams
within this common memory space. Additionally, the four-port
memory provides the primary communication path between the
DART I system and the host computer. Finally, since the primary
memory bus connection is memory-mapped into the boot space of the
processors, the four-port memory serves as the boot memory for one or
both processors (depending on the memory bus mode). Both
expansion port connections are jumper selectable to reside in either the
memory space or the 1/0 space of the ‘C30.

Left Interface Connection - This interface consists of a direct connection
from the physical connector to one of the ports of the four-port
memory. This is the primary communication path between the DART
I system and the host computer.

Right Interface Connection - This interface connects the primary
memory bus of the DART I system to the host computer. It consists of
bidirectional transceivers for the primary bus data lines and drivers for
the primary bus address and control lines. This interface connection is
switch-settable to any 64K word address boundary within the
TMS320C30’S address space.

The ‘C30S can be controlled by the host computer. A software reset line
from the host implements a common reset to the entire DART I system and
places both ‘C30S into reset. The host computer cart also control the hold
signals to each ‘C30 independently. This allows the host computer to hold
both processors, either one of the processors, or neither processor depending
on the operation required.

The DART I board provides an external interface (consisting of both the

leftandrightinterfaces)patternedafterASH’SBansheeMPI(Multi-Processor
Interface). The host Banshee has an M1’I daughter card for connecting
multiple Banshee cards. This interface uses multi-ported memory between
processing elements (see Figure 2 for the logical block diagram). The
Banshee/MPI unit consists of a single ‘C30 and a dual-port memory. For the
host computer to DART connection, the DART I board with two ‘C30S is
treated as a single processing element. The four-port memory on DART is

8

Left

Figure 2
Simplified Multi-Processor

Interface

Transceiver

Multi-
Port

Memory

c1Processing
Element

Right

used as the multi-ported memory between processing elements (i.e., DART
and Banshee). This allows either processor on the DART I board to
communicate with the host through the shared memory of the four-port
memory.

In addition to shared memory through the four-port memory, there
are interrupt connections between the processors. Interrupts from all other
processors are logically combined into a single interrupt line. Upon sensing
an interrupt, the interrupted processor checks the communication register of
each of the other processors for its own processor number. Once the
interrupted processor finds its processor number, it knows which processor
generated the interrupt and can begin servicing the request. This indirect
scheme is expandable and is not limited by the number of interrupt lines into
a processor, nor by the number of bit 1/0 lines out of a processor. A direct
interrupt scheme for n processors requires n-l interrupt lines into each
processor and n-l bit 1/0 lines out of each processor. The indirect interrupt
scheme requires only one interrupt line into each processor and one bit 1/0
line out of each processor. However, additional external logic is required to
logically combine the bit 1/0 lines from each processor into interrupt lines.

The boot sequence for the DART I system is controlled by the host
computer. The host can control the reset and hold signals to the DART
system. While the processors are in hold, the host computer places a loader
routine into the boot space of the processor (4-port memory for shared
memory mode; 4-port memory and 2-port memory of MPI board for split
memory mode). Once the loader routine is in the place, the processor boot
sequence is determined by the hold signals from the host computer. The
loader routine loads program code from the host computer into DART’s code
space. The flexibility of this system allows researchers to make code changes
and rapidly test the changes while running on the actual system. Also, the
architecture can be switched between shared and split memory mode very
quickly. The only hardware change on DART for mode changes is the
settings of some DIP switches (a slightly modified loader routine must execute
on the host computer).

The design of the DART I system provides a flexible architecture which
allows us to rapidly experiment with different configurations. The two
processor, parallel DSP system (with either split or shared primary memory)
provides a useful prototype for developing solutions to real problems.

The DART I system and its host computer (PC-AT with Banshee card)
can be viewed as a three DSP processor system. A three DSP processor system
provides even more flexibility in the design of data flow architectures for
various algorithmic applications. This type of multi-processor system
provides an appropriate test bed for developing software extensions which
support parallel processing in a multi-processor environment.

10

Software (Extensions to SPOX 1.3)

One of the initial goals of the DART project was to provide a high-level
language programming environment for application programming.
Therefore, we needed a real-time operating system which supports multi-
tasking, parallel processing, and efficient high-speed 1/0. We chose SPOX by
Spectron Inc. It supports multi-tasking and provides architecture-
independent, high-speed 1/0 through its device independent, streaming 1/0
calls. However, version 1.3 (the most recent when the project started) does
not support a parallel processing environment. To meet our goals, we
developed several extensions to SPOX to provide the needed parallel-
processing support. This section will describe those extensions.

We set two requirements on the extensions. First, all the extensions
that require inter-processor communication must be interrupt driven. This
uses the least amount of processor overhead and ensures rapid response to a
request between processors. Second, the parallel processor extensions should
build upon the existing multi-tasking control concepts already in SPOX and
should transparently provide control for multiple tasks on a single processor
as well as tasks spread across several processors. From the programmer’s
point-of-view, an application which consists of several tasks running on
several processors should be equivalent to running those same tasks on one
processor. This approach accomplishes two things. First, the programmer
need not worry about how to break the application up to run on multiple
processors. He only needs to consider how to break it up to run as multiple
interacting tasks. Second, it allows the code to be developed and debugged in
a single processor environment. Converting the code to execute on multiple
processor requires only changing 1/0 open statements to reflect remote
machine names for inter-task communication.

These extensions consist of the following four modules. Each module
supports a uni-processor as well as multi-processor environment:

1) The RS (Remote Signals) module provides remotely signaled
conditions. It allows a task on one processor to wait for a condition
to occur on another processor.

2) The NL (Network Locks) module provides network-wide resource

locks.

3) The NB (Network Buffers) module provides network-wide buffers.
This provides network-wide management of memory (including
multi-ported memories), It is not an extension any existing SPOX
concept.

11

4) The DTT (Driver, Task-to-Task communication device) module
provides streaming communication channels between tasks
running on the same or different processors. It is a SPOX compliant
device driver that allows tasks to open channels to each other by
task name and machine name.

RS (Remote Signals) Module.

The RS module contains one user-level function call, RS_s ign a1.

RS sign a1 provides the means for a task on one processor to wait on a—
condition (e.g., a full data buffer or completion of a service request) to occur
on a (potentially) different processor. It is based on the gates and conditions
provided by the KG and KC modules of SPOX. A task enters a local gate
created by the KG_cre ate SPOXs ystem call and waits on a condition created
locally by the KC crest e SPOX system call. This sleeping task can then be
awakened by an~ other task on any other processor by the remote task issuing
an RS sign a1 command. The only requirement is that the waiting task must
have ~reviously communicated with the signaling task to give it the
addresses of the gate and condition it is waiting on. These remote signal calls
are the primary task synchronization mechanism used to coordinate tasks on
separate processors in DART. However, the RS module does not provide for
network-wide gates. In SPOX, gates are used to protect shared data that can be
accessed by several tasks. To provide this capability, we implemented
network-wide resource locks described in the next subsection.

In addition to multi-processing support, we added another extension to
SPOX’S signals, the concept of a “return value”. One common use of
conditions is for tasks requesting services from one another. When a
requesting task, “TASKA”, requests a service of another task, “TASKB”, that
cannot be accomplished immediately (e.g., a calculation to be performed),
TASKA goes to sleep on a previously agreed upon condition, When the
service is finished, TASKB wakes up TASKA by signaling that condition.
However, TASKA must now make another request to obtain the result. This
is especially inefficient when the two tasks are on different processors and the
request involves one processor interrupting the other. To avoid this second
request, we added a return address to the condition object. This allows the
servicing task (TASKB) to write (or, if the two tasks are on different
processors, have the system write) a single word return value at that address

for TASKA before it is awakened. This way, the second service request
becomes unnecessary.

NL (Network Locks) Module

The NL module includes two user-level functions: NL seize and
NL release. These two functions provide network-wide re~ource locks that
mi~ic the uniprocessor resource locks provided in SPOX’S IR module. The

12

NL module provides eight statically defined network locks: five are available
for the user and three are reserved for the system. By calling NL_S eize,a task
seizes contiol of a particular lock and is assured exclusive use of the associated
resource. Any other task on any other processor that tries to seize control of
the same lock will block until the first task releases the lock with a
NL re Ieas e call. When several tasks are requesting control of the same lock,
it i; handed out to each task on a first-come, first-served basis.

The services in the NL module are coordinated by one processor in the
network designated as the NL manager. All requests for seizing and releasing
locks are handled through interrupt service requests to that processor.

NB (Network Buffers) Module

The NB Module contains two user-level functions: NB_S eize and
NB_re leas e. These functions coordinate the exclusive use of buffers within
shared memory resources. DART I uses these functions to implement three
buffers in the shared four-port memory. The DART I four-port memory is
logically divided into four 512 word sections. The last section is reserved for
system use. The other three buffers are available for use by applications.

The function NB_S eize returns the address of the next free buffer and
marks that buffer as used. No other NB seiz e call on any other processor
will return the same buffer until it is rel~ased with a NB re1ease call. As
with the NL module, if all buffers are used, NB seize ~ill block until a buffer
is released. If several tasks are waiting for a fr& buffer, the buffers are handed
out to the waiting tasks on a first-come, first-served basis. Also as with the
NL module, the NB services are coordinated by a single processor in the
network designated as the NB manager. Requests to seize and release buffers
are sent to this processor using interrupt service requests.

DIT (Driver, Task-to-Task communication device) Module

The DTT module provides streaming task-to-task communication
channels. Using the inter-processor task control function provided by the
extensions described above (i.e., RS,. NL, NB), we implemented streaming

communicationchannelsbetweentasksas a SPOXdevicedriver. Thus,
communication between tasks can be accomplished using standard SPOX
streaming 1/0 calls (e.g., SS_open, SS_put).

Tasks open communication channels to each other by processor name
and task name. Communications are carried out by “putting” and “getting”
frames of data into and out of the channels. For example, task “TASKA” on
processor “DARTO” can open a channel to task “TASKB” on processor
“DART1” by simply issuing an SS_open call for the device “DART1:TASKB”.
Likewise TASKB must issue an ss open call for the device—

13

“DARTO:TASKA”. Once both tasks have issued corresponding open calls for
each other, the channel is established. Each channel allows data movement
in only one direction, so a pair of channels must be opened for hi-directional
data movement. Communications require only s S_put and SS_get calls.
We have demonstrated peak data transfer rates of 2.5M words/s (1OM bytes/s)
using the DTT device driver.

14

VIP Ground Station

In February 1988, a study was initiated at Sandia National Laboratories
in Livermore, California to determine the feasibility of using a spin stabilized
artillery projectile as a reconnaissance or imaging platform. The study was
predicated on the perceived need for low-level military commanders to be
able to obtain real-time combat information abut the area “over the next hill”.
The result of this study was VIP, the Video Imaging Projectile. This section
will describe how DART’s capability was exploited to prototy-pe a ground
station that can reconstruct video data telemetered down from the projectile
and display it for viewing in real-time.

VIP background

A spin-stabilized projectile potentially provides a very low cost
platform for obtaining close range imagery. The low cost potential is the
result of the overall system simplicity. The concept uses a single optical
sensor whose field-of-view is perpendicular to the longitudinal axis of the
shell. As the shell spins and translates, the sensor scans a helical pattern
whose axis is curved with the trajectory of the shell. The intersection of the
helical pattern and the ground is a series of scan lines that forms rasters
which can be reconstructed to form an image of the ground under the flight
path (see Figure 3).

Two test units, VIP-1 and VIP-2, were designed and fabricated. They
were based on the M549 155mm artillery shell shape and mass properties.
Both test units were fired successfully in late 1989. All analog data
telemetered back to the ground was recorded on high-speed 14-track analog
tape to provide data for further laboratory experiments.

The resolution of the resulting image in the down range direction is a
simple function of the shell’s spin rate and forward velocity. For the 155mm
howitzer, the shell travels forward approximately 3 meters per revolution at
the gun barrel exit. As the shell flies, its forward velocity decreases faster than
its rotational velocity and the range resolution improves to approximately 2
meters. The cross range resolution is a function of the projectile spin rate, the
bandwidth of the telemetry link, the rate the analog signal is sampled, and the
height of the projectile off the ground. For both VIP-1 and VIP-2, we sampled
the analog signal at 1 MHz providing a ground cross-range resolution of
approximately 1 meter when the shell is at 1 kilometer altitude.

The Problem: Image Reconstruction

The data stream to be processed, whether digitized directly from a
telemetry link or from recorded tape, is essentially a continuous string of
intensity values. To reconstruct an image of the ground over-flown by the

15

y-y-?~~, ,,?,,?,,~?,~y,+
,,,\ /\’,\)

~hYA:~~--k
,\,\~,\’i 1,,~,

,,, \f, , ,! ‘\ d\,\,

RF
~ , , ‘,,’ ‘}. ‘ ‘ ~,’ ‘,’ h ~, “?: ‘hJ\,’ \. fl, \’ ,~, \,,,\,’, \ ,’:, /’”, ,:’/ ,>; ‘1,‘1

TRANSMISSION /’” ,/ ‘ ~~, /“’\;’ :(’ ‘y ;\:’,:{: i’, ,~(,W,)’ v . ‘, i, ‘\///,’{ / ,,\ f\,\
‘$(1, ’f.,’ ‘ ,/, ,, /,,, \\\

/’ ‘\. \ i’ ‘/ J\ ,’, ,“, /, \./’ ,1 /’, b, ‘\ ‘\ \‘\ “,, ’’,,’ ~r ,,/.’’ .’;(“,, , ‘~.>z, \\\\v >,~,’j ,’, / ,$ \\’\

J&. -----:’77 ;(’ ;,’” /’;::;:,:(;:@:,/:;:’:4; ’~’\\\ “, “ ‘: ‘
DRY

LAKE
DATA

,, \,,// \’ \/ _\ \/
RECORDING ‘“ ,’” /“ ,;’ .:: “ : . //’ ,);’:ti~%,w ‘I ‘\, “1 “. ‘I “. “\ “, ‘\

-’--’i:
-v

- ‘-
,:’:’,., (+.=

L
155mm

GUN SITE

SL-22715A m

Figure 3
Video Imaging Projectile Test

shell, this data stream must be sectioned into rasters. These rasters must then
be registered one to the next. Alignment of the scan lines is automatic if a
sufficiently accurate reference of the shell’s angular orientation is available.
For the current sampling rate of 1 MHz and the nominal spin rate for the
155mm shell of 150 Hz, each pixel in a scan line represents 1 milliradian.
Figure 4 shows how sensitive the eye is to misregistration of adjacent lines,
especially for small objects. In the figure, a few pixel misregistration makes it
difficult to distinguish a tank-like vehicle from a bush. It was decided that the
test objectives could be satisfied without a roll reference of 1 milliradian
accuracy. Instead, the registration was accomplished using computational
methods.

A gross reference was provided on the test shots by an infrared (IR)
sensor mounted midway in the nose of the shell. The sensor saturates when
the sun is in its field of view, The IR sensor reference is accurate only to *1O
milliradians. Therefore, to obtain acceptable image registration we must
further computationally align the image. We do this by aligning each pair of
adjacent raster lines so as to minimize the total absolute difference between
them. VIP was originally conceived as an imaging platform which could
provide field commanders with quick reconnaissance data of objects located
over the next hill. To be effective in this role, the image must be
reconstructed and displayed near the gun tube in near real-time. To
demonstrate the feasibility of the system, a DART I based prototype
groundstation was built that can digitize the video signal and then align the
image for display in (near) real-time.

The Prototype Groundstation

A block diagram of the groundstation is shown in Figure 5. The
groundstation uses DART I as its computational engine. A Compaq 386/25
serves as host to a Data Translation DT2862 frame grabber and an ASPI
Banshee board containing one ‘C30. The Banshee has 512K bytes of SRAM
and 4M words of DRAM on a memory expansion daughter board, The
Banshee serves as the system’s control and communication processor and as
the direct host to a DART I board. The video signal is digitized by a custom
A/D hard and the frame grabber drives the system display.

Using the parallel processor extensions described in Section 3, we
implemented the software for image acquisition, registration, and display in a

straightforwardmanner. Thesoftwareconsistsoffourcooperatingtasks:
one server task and three registration tasks. The server task runs on Banshee.
It handles data acquisition, manages the registration process and displays the
final image. The three registration tasks are identical and run on all three
‘C30s, one per processor. They are responsible for registering continuous
blocks of the image.

17

TRUE IMAGE

UNREGISTERED IMAGE

(ASRECEIVEDIMAGE\

1 I 111111 [11 11[11 I1[IIII111111
11111111111111 [III1IIII11III1-
1IIIIIIII111111 [IIIIIIIIII1II

11111111111111111111111[1 11111

t,,,,,,,,,,,,,,,,
incoming lines

1111111~1

i

registration

Figure 4:

REGISTERED IMAGE

Effect of Image Registration

18

+

PC AT
Host Computer

i ,T
Telemetry 4

Threshold Receiver

16Mb
AS PI Detector

Memory File
Banshee

Mother Board Ato D $
t

Converter $

c1

Tape
‘‘” Playback

FIFO
Buffer

Multi-Processor Y
Interface

I Frame Grabber
DT 2862

Video Display

r 1

DART Image
Processor Board

Figure 5
VIP Groundstation Prototype

Block Diagram

To acquire an image from a VIP shot, a controlling server task is loaded into
Banshee and identical registration tasks are loaded into each ‘C30 on DART I
and on Banshee. First, using interrupts generated by the saturating II? signal
as a time reference,the servertask uses the high-speed A/D board to digitize
that portion of the data corresponding to the ground (approximately one
quarter of each revolution) and stores consecutive raster lines in the DRAM
daughter board. Due to the limited size of the DRAM board, only 12 seconds
of a 30 second VIP flight are stored. This corresponds to 1500 consecutive
rasters, each consisting of 1500 pixels.

Once the digitized image has been stored, the image is aligned in a
second pass. The server passes the image to the registration tasks via the DTT
communication channels, in blocks of eight consecutive raster lines. The
registration tasks then independently align consecutive pairs of rasters within
their blocks and pass the relative raster-to-raster offsets back to the server task,
again via DIT channels, The server task repeats this process, passing out
blocks of rasters to each registration task and collecting back relative offsets,
until the entire image has been registered, The server task then displays the
registered image on a monitor via the frame grabber. The server also
provides mouse driven pan and zoom for detailed image inspection.

Both the VIP-1 and VIP-2 shots were conducted at Sandia’s Tonopah
Test Range in Nevada. Figure 6 shows a side by side comparison of an
unregistered versus a registered image of 12 seconds of flight from the VIP-2
shot. The “waviness” in the unregistered image is due to the effect of the
shell’s coning dynamics on the IR sensor’s field-of-view. Although
distortions have not been completely eliminated from the registered image, it
is significantly better than the unregistered image. The entire image is
registered in just over 13 seconds. In actual use, the center 12 seconds of data
can be aligned and displayed on the screen before the shell hits the ground.
Figure 7 shows a side by side closeup comparison of the unregistered versus
registered ‘T’ shaped test pattern. The “I” shaped pattern was painted on the
ground prior to the shot to test the imaging quality of VIP. It is 500 meters
long and 250 meters wide. The lines are 4 meters wide.

20

Unregistered Image Registered Image

Figure 6: VIP Flight Data (12 sec.)

Y
I’d

Figure 7: l-shaped Test Pattern
Q

Conclusion &Future Work

High-end signal processing and control applications require significant
computational capabilities, The DART I board (with two ‘C30S) can perform
up to 66 MFLOPS in a parallel processing environment. The DART I board is
programmable in a high-level language (“C” or Ada) and uses the SPOX real-
time multi-tasking operating system;. We have added our own local
extensions to support parallel processing: RS (Remote Signals), NL (Network
Locks), NB (Network Buffers), and DIT (Driver, Task-to-Task
communication device). This combination of software features (“C”
programmability, the SPOX operating system, and parallel processing support)
significantly reduces the development cost of application software for signal
processing and control applications. We have successfully applied this
capability to a real-world, real-time problem (image reconstruction for VIP),
thus demonstrating the viability of using parallel DSPS for high-end signal
processing problems.

One of the lessons learned from the experimental applications of the
DART I system was that even a 66 MFLOP DSP board cannot keep up with
certain applications requiring high 1/0 throughput or very high floating-
point performance. Luckily, many of these applications do have algorithms
that can be partitioned into parallel or serial structures. Thus, we are
designing a next generation DART board that can be a more flexible, modular
building block for connecting into a multi-board system with either parallel
or serial communication strategies.

The DART II design improves on the original DART I design and
make DART II a more practical solution for existing problems (e.g., intelligent
control, structural control, and image processing). The design of DART II
improves on the original dual-processor design by: 1) providing for multiple
DARTs to be connected in series or in parallel, 2) incorporating hi-directional
transceivers between the primary buses of both processors, 3) increasing the
amount of available memory, and 4) packaging the electronics onto a
standard PC-AT plug-in card.

The basic architecture of the DART II system is shown in Figure 8. The
system consists of two Texas Instruments’ TMS320C30 DSP chips. A dual-port
memory (8K words x 32 bits) connects the expansion ports of both ‘C30S. The

main memory (256K words of 32-bit memory) on the primary buses of the

DSP chips is partitioned into two 128K word “semi-private” banks. A single

set of address and data transceivers across the entire primary bus allows the
two processors to “share” their semi-private memory banks. This
arrangement eliminates arbitration overhead for private memory accesses. In
addition, on the primary memory bus of one of the processors is a large, field-
programmable gate array attached to all data, address and control lines. This
gate array serves as a reprogrammable interface to either the outside world or

25

m
m

DMemory
Bank 1

Bus

I Memory
Expansion J1

t- i

I
Processor

Site ZI

cMemory
Bank O

Splitter

Host
Interface JO

r

I

‘-po”t-i ‘::%rIMemory

Figure 8
DART II Architecture

to other DART II cards. This interface allows multiple DART II cards to be
connected in series or in parallel, whichever is best suited for a particular
application (see figure 9).

The design of the DART II system provides a flexible, expandable
architecture which can be used to solve practical problems, The DART 11
module allows a system designer to quickly design an electronic system
architecture that is tailored to address his specific problem, and with the
available compiler and operating system tools, he can produce quick
turnaround, turnkey systems for a variety of uses.

27

N
m

Series Connection Parallel Connection

Figure 9
Connection Strategies

UNLIMITED RELEASE

INITIAL DISTRIBUTION

1128
1164
1400
1900
2234
2336
2345

2722

2732

5375
5375

8000

8245

P. J. Hargis, Jr.
T. D. Raymond
E. H. Barsis
D. L. Crawford
S. M. Kohler
H. Shen
B. L. Burns
M. S. Rogers
P. A. Mahoney
D. D. Andaleon
C. T. Oien
J. C. Crawford
Attn: E, E. Ives, 5300

R J. Detry, 8200
P. L. Mattem, 8300
P. E. Brewer, 8500

R. J. Kee
8300A T. M. Dyer
8300A
8362
8400

8430
8431

8432
8432

8432

8432
8432
8432

8433

84-40
8450

8454
8455

8480

8484
9130
9131

9133

J. Vitko
R. W. Carling
R. C. Wayne
L. A. Hiles
F. R. Hansen (20)
K. R. Berry (20)
J. S. Kraabel
J. E. Leeper
E. L. McKelvey
L, M. Napolitano (20)
W. G. Wilson
M. H. Rogers
H. Hanser
L, A. Hiles
Attn: T. R. Harrison, 8451

C. L. Knapp, 8453
A. L. Hull, 8454

M. T. Stewart
C. F. Acken
L. A. West
L. N. Tallerico
A. C. Watts
D. D. Boozer
L. D. Hostetler

29

9543 J. C. Matter
9561 C. J. Hanley
9567 S. C. Roehrig

8535 Publications for OSTI (10)
8535 Publications/Technical Library Processes Division, 3141
3141 Technical Library Processes Division (3)
8524-2 Central Technical Files(3)

30

	INTRODUCTION
	DART I
	SOFTWARE (EXTENSIONS TO SPOX 1.3)
	RS (REMOTE SIGNALS) MODULE
	NL (NETWORK LOCKS) MODULE
	NB (NETWORK BUFFERS) MODULE
	DTT (DRIVER, TASK-TO-TASK COMMUNICATION DEVICE) MODULE

	VIP GROUND STATION
	VIP BACKGROUND
	THE PROBLEM: IMAGE RECONSTRUCTION
	THE PROTOTYPE GROUNDSTATION

	CONCLUSION & FUTURE WORK

